Identifying the Structure of the Intermediate, Li2/3CoPO4, Formed during Electrochemical Cycling of LiCoPO4
نویسندگان
چکیده
In situ synchrotron diffraction measurements and subsequent Rietveld refinements are used to show that the high energy density cathode material LiCoPO4 (space group Pnma) undergoes two distinct two-phase reactions upon charge and discharge, both occurring via an intermediate Li2/3(Co2+)2/3(Co3+)1/3PO4 phase. Two resonances are observed for Li2/3CoPO4 with intensity ratios of 2:1 and 1:1 in the 31P and 7Li NMR spectra, respectively. An ordering of Co2+/Co3+ oxidation states is proposed within a (a × 3b × c) supercell, and Li+/vacancy ordering is investigated using experimental NMR data in combination with first-principles solid-state DFT calculations. In the lowest energy configuration, both the Co3+ ions and Li vacancies are found to order along the b-axis. Two other low energy Li+/vacancy ordering schemes are found only 5 meV per formula unit higher in energy. All three configurations lie below the LiCoPO4-CoPO4 convex hull and they may be readily interconverted by Li+ hops along the b-direction.
منابع مشابه
LiCoPO4 cathode from a CoHPO4·xH2O nanoplate precursor for high voltage Li-ion batteries
A highly crystalline LiCoPO4/C cathode material has been synthesized without noticeable impurities via a single step solid-state reaction using CoHPO4·xH2O nanoplate as a precursor obtained by a simple precipitation route. The LiCoPO4/C cathode delivered a specific capacity of 125 mAhg(-1) at a charge/discharge rate of C/10. The nanoplate precursor and final LiCoPO4/C cathode have been characte...
متن کاملAn Electrochemical Investigation of Nano Cerium Oxide/Graphene as an Electrode Material for Supercapacitors
In this paper, the effect of cationic and anionic ion sizes on the charge storage capability of graphene nanosheets is investigated. The electrochemical properties of the produced electrode are studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques in 3M NaCl, NaOH, and KOH electrolytes. Scanning electron microscopy (SEM) is used to characterize the mi...
متن کاملProbing the Additional Capacity and Reaction Mechanism of the RuO2 Anode in Lithium Rechargeable Batteries.
The structural changes and electrochemical behavior of RuO2 are investigated by using in situ XRD, X-ray absorption spectroscopy, and electrochemical techniques to understand the electrochemical reaction mechanism of this metal oxide anode material. Intermediate phase-assisted transformation of RuO2 to LiRuO2 takes place at the start of discharge. Upon further lithiation, LiRuO2 formed by inter...
متن کاملAnalyzing the Aspects of Cross Sharing Ownership
With the growth of capital market, the shareholding structure of companies has become more complex. Direct ownership is easily recognizable through companies’ shareholders information, however with the formation of cross shareholding among companies, a kind of indirect and complex shareholding has emerged which is not observable. The primary owners (original owners) can take over other companie...
متن کاملControlling the shape of LiCoPO4 nanocrystals by supercritical fluid process for enhanced energy storage properties
Lithium-ion batteries offer promising opportunities for novel energy storage systems and future application in hybrid electric vehicles or electric vehicles. Cathode materials with high energy density are required for practical application. Herein, high-voltage LiCoPO4 cathode materials with different shapes and well-developed facets such as nanorods and nanoplates with exposed {010} facets hav...
متن کامل